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Small-scale magnetic fields in turbulence : 
Saffman’s approximation revisited 
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The subject is the small-scale structure of a magnetic field in a turbulent conducting 
fluid, ‘small scale ’ meaning lengths much smaller than the characteristic dissipative 
length of the turbulence. Philip Saffman developed an approximation to describe this 
structure and its evolution in time. Its usefulness invites a closer examination of the 
approximation itself and an attempt to place sharper limits on the numerical para- 
meters that appear in the approximate correlation functions, topics to which the 
present paper is addressed. 

A Lagrangian approach is taken, wherein one makes a Fourier decomposition of the 
magnetic field in a neighbourhood that follows a fluid element. If one construes the 
viscous-convective range narrowly, by ignoring magnetic dissipation entirely, then 
results for a magnetic field in two dimensions are consistent with Saffman’s approxi- 
mation, but in three dimensions no steady state could be found. Thus, in three 
dimensions, turbulent amplification seems to be more effective than Saffman’s 
approximation implies. The cause seems to be a matter of geometry, not of correlation 
times or relative time scales. 

Strictly-outward spectral transfer is a characteristic of Saffman’s approximation, 
and this may be an accurate description only when dissipation suppresses the con- 
tributions from inwardly directed spectral transfer. I n  the spectral region where 
dominance passes from convection to dissipation, one can generate expressions for the 
parameters that arise in Saffman’s approximation. Their numerical evaluation by 
computer simulation may enable one to sharpen the limits that Saffman had already 
set for those parameters. 

1. Introduction 
In astrophysics one encounters magnetic fields with a vast variety of length scales. 

This is true not only in absolute terms but also in relative terms: relative to a dissipa- 
tive cut-off in a turbulence spectrum, the magnetic field may have a much larger scale 
or a smaller one. No recitation of the varieties is appropriate here, but the specific 
astrophysical scene that led to this paper deserves description, for it helps to set the 
mathematical context. 

In the early stages of an expanding universe, turbulence can generate magnetic fields 
spontaneously (Harrison 1973). Such seed fields can be amplified throughout the radia- 
tion era, the period when the temperature still exceeds 4000 K and the conductivity 
of the cosmic plasma is exceedingly high. The kinematic viscosity increases by many 
orders of magnitude during this era, increasing the cutoff length of the turbulence 
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and suggesting that the magnetic spectrum will be left behind at  smaller length 
scales. Toward the close of the radiation era, the ratio of magnetic diffusivity to kine- 
matic viscosity is less than and so the magnetic spectrum can extend far beyond 
the dissipative cut-off in the turbulence spectrum. The magnetic field is located pre- 
dominantly in the viscous-convective range, viscous for the turbulence but convective 
for the field. In the expanding universe one needs to follow the evolution of such a field; 
results for a temporally stationary situation, even if reliable ones were available, 
would not suffice. An approximation developed by Philip Saffman (1963, 1964) can 
be applied to this problem (Baierlein 1978) and to other astrophysical contexts as well. 
Such usefulness invites a closer examination of the approximation itself and an attempt 
to place sharper limits on the numerical coefficients that appear in the approximate 
correlation functions. The present paper reports some contributions along these lines. 

2. Mathematical framework 
At this point one could display Saffman’s approximation - indeed, the reader may 

wonder why that wasn’t done already in the introduction - but it will be useful to 
develop a mathematical context for the display and then to derive Saffman’s approxi- 
mation by a variant of the routes that Saffman himself used. 

The basic differential equation for a magnetic field in a turbulent conducting fluid is 

aB/at = curl (v x B) + AV2B, (2.1) 

where h is the magnetic diffusivity, essentially the inverse of the electrical conduc- 
tivity (Moffatt 1978). Both the magnetic field and the velocity field are specified to 
have zero divergence: 

(2.2) 

The objective is to analyse a small-scale magnetic field, a field whose dominant 
length scale is much smaller than the dissipative cut-off length of the turbulence. A 
spatial Fourier transform will bring the relative length scales into prominence. So let 

(2.3) 

divB = 0, divv = 0. 

B ~ ( x ,  t )  = (2?r)-31d3kbj(k, t )  e--ik.x, 

and let vj(k, t )  denote the analogous Fourier coefficient of the velocity field. The Fourier 
transform of (2.1) can then be written 

abj (k, t ) /a t  = - i( 2m)-31  d3k’ {@,(k’) k; b,(k - k’) - urn( k’) krn hi( k - k’)} - hk2bj( k), 
(2.4) 

where (2.2) has been used several times. The integral over k’ cuts off sharply when k‘ 
exceeds k,, the dissipative cut-off in the turbulence spectrum. Since we are concerned 
with the magnetic field at wavenumbers k 9 E d ,  the argument k - k’ in the magnetic 
coefficients is always close to k. Some expansion of those coefficients about b,(k) ought 
to  be possible and fruitful. 

At this point one must acknowledge the advective influence of the large turbulent 
eddies. Advection can produce rapid changes in the phase of a Fourier coefficient while 
leaving the amplitude substantially unchanged. Such phase changes depend sensitively 
on the full argument k - k’, and so no simple Taylor expansion of the coefficient is 
adequate. But one can cope with this problem. Precisely because we are concerned 
with the small-scale magnetic field, we can analyse the field in the neighbourhood of a 
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single fluid element as that element is advected through space. The behaviour of B 
over distances that exceed the neighbourhood of the fluid element is not of interest. For 
the chosen element we can explicitly incorporate the phase change due to advection 
before attempting an expansion. And a t  some later stage we can average over many 
elements and their neighbourhoods. 

So we shift our attention to a single fluid element and its neighbourhood. Let the 
position ofthat element be denoted by y(a, t ) ,  where a is the position a t  time t = 0 and 
where 

dY@, t ) / d t  = v ( x ,  t)l,=,. ( 2 . 5 )  

Advection by the large eddies appears in a Fourier coefficient via a factor exp [ + k .  y]. 
Thus a function like 

b,(k - k’)  exp [ - ( k  - k’) . y] 

is substantially independent of advection and can be expanded successfully in a Tay- 
lor’s series in k’. Such an expansion in (2.4) enables one to derive a tractable equation 
for the Fourier density tensor D,,(k, t ) ,  defined by 

D,,,(k, t )  = b,(k, t )  bT(k, t ) .  
That equation is 

aD,,(k, t ) / a t  = T,, Dnj + qn Dmn- a[ - k ,  Tan Dmj]/ak,  - 2hk2Dm,, ( 2 . 7 )  

( 2 . 8 )  
a 

where Tmn(t) 5 -vm(x,t)(x=y 
ax, 

is the velocity-gradient tensor evaluated a t  the current location of the fluid element. 
Thus T,, is a Lagrangian velocity-gradient tensor. The expansion in ( 2 . 4 )  was carried 
through terms linear in k‘;  discarding terms of order ( k ‘ ) 2  and higher amounts to dis- 
carding spatial variation in the local velocity gradient. 

Although only an approximation, equation ( 2 . 7 )  is for us the basic working differ- 
ential equation in wavenumber space. The change of focus to a single fluid element and 
its neighbourhood can be implemented in another, equivalent manner. One can 
introduce a new independent position variable g ,  

5 = x-y(a,t), 

so that spatial locations are reckoned relative to the instantaneous position of the fluid 
element (Hill & Bowhill 1 9 7 8 ) .  Equation ( 2 . 1 )  can be converted to partial derivatives 
with respect to t and E. The effective velocity field will become v ( x ,  t )  - v(y, t ) ,  and thus 
advection is removed in the neighbourhood of the fluid element. A Fourier decompo- 
sition of the local magnetic field with respect to t,he variable 5 will lead to a differential 
equation like ( 2 . 4 ) ,  but one in which a Taylor expansion is immediately permissible 
because advection has already been acknowledged. 

The Fourier density tensor carries more information than one really cares about. 
In particular, one can average over the direction k at fixed magnitude k and also 
form the trace. Applying those two operations to ( 2 . 7 )  yields 

a l a  
- ( D j j ) ~  = 2(qrn2%) Dmn)Z- - - [ - k d ( k .  T.  kDji)i] - 2hk2(Dj i )~ ,  at kd-’ ak ( 2 . 9 )  

where d = spatial dimension = 2 or 3.  ( 2 . 1 0 )  
16-2 
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Here and henceforth the subscripts on angular brackets indicate the quantity 
over which the averaging was performed. The first term on the right-hand side 
of (2.9) describes amplification; the second, spectral transfer; and the third, dissipa- 
tion. Only the symmetric portion T(,,, of the velocity gradient tensor survives 
the operation on (2.7), and so the Lagrangian strain field is the directly relevant 
quantity. 

Several difficulties arise when one tries to solve either (2.7) or (2.9) as a stochastic 
differential equation, wherein the tensor T,, is taken as a stochastic variable. The 
primary source of difficulty is the coincidence of two vital time scales. The differential 
equations by themselves imply that Dmi changes on a time scale set by l/O(Tmn). But 
the Lagrangian velocity gradient itself changes on a time scale of just this order. In  
different words, the auto-correlation time of the Lagrangian velocity gradient is about 
the same as the time scale €or changes in Dmj, and so no approximation based on a short 
auto-correlation time can be invoked. 

The persistence of the Lagrangian velocity gradient can, however, be turned to 
advantage, as Batchelor (1959) showed for a scalar field and Saffman (1963, 1964) did 
for vector fields. One can reason that T,,(t) and D,,(k, t )  will be well correlated (at 
least after some transient period has elapsed). If one averages (2.9) over many fluid 
elements and over an initial distribution of the magnetic field, the result may have the 
form 

where 

a cr 1 8  1 
-D , (k , t )  = 2- D -- - kd-DS - 2hk2Ds, 
at 7 k d - l a k [  r ] (2.11) 

DS(k, t ,  (Djj>;, b, turbulence, (2.12) 

l / ~  = positive constant = O[qmnl] ,  

a = positive constant = O(1). 

(2.13) 

(2.14) 

Equation (2.11) is Saffman’s approximation, written in wavenumber space, though 
the present ‘derivation’ does not do justice to the care that Saffman exercised 
in his various routes to the approximation. The original routes show that l/r 
should be equal (in magnitude) to some average of the largest negative strain eigen- 
value, while a/r represents an analogous average of the largest positive strain 
eigenvalue. 

At this point the extended introduction ends, and one can turn to the major ques- 
tions. What range of validity does the approximation (2 .1  1 )  possess? Can one sharpen 
the numerical limits that Saffman placed on a? 

Some solutions to equations (2.7), (2.9) and (2.11) can be found and, by comparing 
the solutions, one may take some progress toward answering the questions. So we turn 
to those solutions. 

3. Some general solutions 

tials. The solution itself is 
A formal general solution to (2.7) can be written in terms of time-ordered exponen- 

Dmj(k , t )  = U,,(t)U,,(t)D,,(k.U,O)exp 
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while the definitions of the auxiliary tensors are these: 

u,,(t; t ‘ )  = [enp/t:dt”~(t”)] 
mp,  time-ordered 
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U,,(t) ss Ump(t; 01, (3.3) 

(3.4) Wua(t; t ’ )  = Uup(t; t ‘ )  U,,(t; t ’ ) .  

Saffman ( 1963) provided an initial-value solution for his approximation in three 

D,(k, t )  = e(2u-d)t/7DS(ke-t/7, 0) exp [ - 2Ak2q2(t)] ,  (3.5) 

where q2(t)  = $T[ I - e-2t/7]. (3.6) 

dimensions; the generalization to d dimensions is simply 

The structure of Saffman’s solution suggests that an initial spectrum whose form is a 
specific monomial in k should produce a steady state, either when h can be ignored or 
after a transient period has elapsed. This is perhaps too naive a view, but it does 
suggest that one explore monomial initial spectra for the exact solution (3.1) and see 
whether a steady state in the viscous-convective range can be found. There will be 
angular integrals to evaluate; those associated with two spatial dimensions are by far 
the easier, and so let us start with that restricted geometry. 

4. Two spatial dimensions 
Several averages can be performed in the course of searching for a statistically 

steady state. A convenient starting point is this one: we focus on a specific fluid element 
and a specific wave vector k but average over the magnetic Fourier coefficients b(k, 0) 
that could be associated with them. If we imagine that the magnetic field was intro- 
duced into the turbulence a t  t = 0, then the average of Dmj(k, 0) over b(k, 0) must have 
the isotropic form 

f (k2 )  (4.1) 
A *  1 

<Dm,(k, O ) ) ,  = ( L i  - Ic, kj) W) 
with some scalar function f ( k 2 ) ,  which is numerically equal to the average of the initial 
trace. An average over magnetic fields that had been introduced much earlier, but into 
the same turbulence, would exhibit a correlation with the fluid field and hence not 
necessarily possess the isotropic form (4.1); more about that later. 

What monomial should one try for the scalar f ( k 2 )  ? Saffman’s analysis enables one 
to estimate (T and then, from (3.5), to narrow the range of choices. Here is how that 
works. The property div v = 0 implies Tr T = 0, where ‘ Tr T ’ is the trace of matrix T. 
In  two dimensions there are, of course, only two strain eigenvalues, whose sum must 
therefore be zero. If the averages that define u/r and l/r have the same weighting 
functions, then (c /T )  + ( - I / T )  must vanish in two dimensions. This suggests c2dim = I .  
If that value is correct, then the first factor in (3.5) does not change with time, and so 
an initial trace that is independent of k would be the appropriate choice. Thus one is 
led to try 

f ( k 2 )  = constant. (4.2) 
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required in an average over k. One finds 
If one pools (3.1), (4.1) and (4.2) and sets h = 0, one can do the angular integrals 

(4.3) (Djj(k, t))a,$ = d e t W V j i ( k ,  O),,  

is symmetric and positive definite; so its square root, W4, is well-defined. 
Only the properties of W just mentioned and d = 2 are needed to compute (4.3)- 

(4.5) from (3.1), (4.1) and (4.2). Now, however, one can note that T r T  = 0 implies 

(4.7) 
detU(t) = 1,  and so 

det W = 1, 

independent of dimension. This information, together with (4.3), tells us that we have 
indeed found a steady state, at least as far as (Dij)b,$ is concerned. 

To interpret (4.4) and ( 4 3 ,  we need to know more about the tensor W. At t = 0, 
that tensor is simply the unit tensor. After one turnover time for the small eddies, one 
can anticipate W = O(efl) = O(3 or Q),  say, subject to (4.7). As time goes on, the 
spread in the probability distribution for W or its eigenvalues {wi} grows. An analysis 
by Cocke (1971) suggests that the spread associated with In wi may go as t t .  A cumulant 
expansion suggests 

subject to (4.7), as do analyses by Lumley (1972, 1978). Fortunately, specific forms 
are unimportant: what matters is that the typical eigenvalues quickly become large or 
small relative to unity, although their product is constrained by (4.7) to be precisely 
unity. 

Since W is determined by an integral over T, one expects W and T to be well- 
correlated. Then Tr (TWg), which is dominated by the large eigenvalue of W ,  is likely 
to be positive and of order ‘positive strain eigenvalue’ times Tr (Wa). But Tr (TW-4) 
will be dominated by the small eigenvalue of W, and so one can expect that trace 
to be of order ‘negative strain eigenvalue’ times Tr (W-4). Saffman’s factorization 
of the correlation functions on the left in (4.4) and (4.5) is supported, as is his quali- 
tative description of the factors. 

Next, one can form the ratio of (4.4) and (4.5) to extract a value for CT. Upon invok- 
ing Tr T = 0 ,  one finds 

(Wat,(t))turbulence N ~ X P  [const. x tI7 

independent of W and T, and so a comparison of (2.9) and (2.1 1) implies 

Auspicious. 
Thus far we have worked withf(k2) = constant. If, instead, one triesf(k2) cc ( k 2 ) p ,  

with p some exponent near zero, say, - 0.4 ,< p ,< + 0.4, then one finds that (Dji)b,C 
increases with time if p < 0 and decreases ifp > 0. The behaviour of Saffman’s approxi- 
mation is qualitatively the same. 

(+zdim = 1. (4.9) 
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5. Three spatial dimensions 
The situation in three spatial dimensions is more complicated - by far. The property 

Tr T = 0 now says merely that the sum of three strain eigenvalues is zero and thus no 
longer gives a sharp estimate of what (T should be. An analysis by Saffman (1963, 
1964) led to (T -" 0.8 and almost surely (T < 1. One is inclined to set 

f ( k 2 )  o= (k2IP (5.1) 

in (4.1) and look for a value of p that will yield a steady state for a suitable average of 
Djj (k ,  t ) .  From (3.5) one would infer 20.- 3 - 2p = 0, and therefore Saffman's estimates 
would suggest p 2: - 0.7 and p < - 0.5. 

So one combines (3.1), (4.1) and (5.1), together with h = 0,  and then one asks, can 
one choose p such that 

'(w;P) ( D j j ( k > t ) ) b , c l A , . o  (5.2) 

remains steady as typical values of W increase, subject to det W = 1 1 Unfortunately, 
it seems that I(W;p) has an absolute minimum a t  wab  = 8,b for all reasonable values 
of p and that its growth as W becomes large is indeed a large growth, regardless of p .  
The bases for this conclusion are the following. 

(1) An analysis of three limiting situations, 

w1 = w2 > 1, 

w2 = w3 < 1, 

w1 B w2 = 1 B w3, 

as order-of-magnitude estimates for general p and as explicit integrations for tractable 
specific values of p .  

(2) A variational calculation in the neighbourhood of w,b = aab. 
(3) Evaluation of I(W;p) by computer for - 1.5 < p < 0.5 in steps of Ap = 0.1 or 

I n  short, in the sense that p would provide a numerical value for u, there is no u. 
In  two dimensions everything worked so well. Why this failure in three dimensions? 

Balancing amplification and spectral transfer in the viscous-convective range is a 
geometrically subtle matter, as we shall see explicitly later on. The addition of a third 
dimension - and hence a third strain eigendirection - increases the orientational free- 
dom of magnetic field and wave vector relative to $he strain field. This extra freedom 
upsets the precarious balance that can exist in two dimensions. 

A scalar field, one should note, does not suffer such a qualitative change on the 
transition from two to  three dimensions. Equations (2.7) and (2.9) can be adapted to a 
scalar field by deleting the amplification terms and by regarding DZi as the scalar 
field. The analogue of (3.1) follows when the initial U x U factors are deleted and a 
trace is taken. An initial scalar spectrum of the monomial form, cc k-d, leads to angular 
averages that can be performed analytically in both two and three dimensions. One 
finds 

and so det W = 1 implies constancy in time. The spectral form in three dimensions, 
cc k-3, was found by Batchelor (1959) and has reappeared in a variety of derivations. 

0.2 for a variety of sets {wj}.  

(scalar (k, t))clAsn = (det W)-t(scalar (k,  O ) ) f ,  (5.3) 
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Equation (5.3) provides one reason why that spectral form is so durable: it  generates a 
steady state even without any averaging over the turbulence, that is, over the 
Lagrangian strain field and its history. In  particular, that spectral form must be 
unaffected by intermittency. 

No suitable exponent p or parameter r could be defined. What is one to conclude 
from this? One must remember that the analysis was restricted to a narrowly con- 
strued viscous-convective range: the dissipation associated with h was explicitly and 
entirely omitted. Within that rigid context, however, a conclusion would seem to be 
this: in three dimensions, amplification is more effective than Saffman’s approxima- 
tion implies. 

The cause seems to be geometry, not correlation times. Support for this proposition 
comes from calculations done in the limit of short auto-correlation times. Such a limit 
conflicts with the persistence that Batchelor and Saffman believe characterizes the 
Lagrangian processes - as noted in 5 2 - but the limit is instructive nonetheless. Details 
are left to the appendix. Suffice it to say here that the steady state in two dimensions is 
reproduced but, in three dimensions, no meaningful steady-state solution exists. 

6. A kinematic paradox 
The negative results in $ 5  prompt one to ask, can one find a context where Saffman’s 

approximation is manifestly valid. Examining spectral transfer will provide a clue. 
If we look at the arguments of D, in (3.5), we see that the solution to  the approxima- 

tion describes a spectra1 transfer that is strictly outward in wavenumber space. The 
formal solution (3. I) ,  however, describes a more complicated spectral transfer. If we 
denote by kold the wave vector a t  t = 0 that becomes knew a t  time t ,  we can extract the 
relation 

kold = knew.U* (6.1) 

Multiplying from the right by U-l and then squaring, we get 

So long as W-1 has at least one large eigenvalue, most orientations for.‘,,, will yield 

knew ’ kold (6.3) 

as kOld goes over 477 solid angle at fixed k&d. Thus most old wave vectors will be pushed 
outward in wavenumber space. This, of course, accords with the effects of persistent 
straining as envisaged by Batchelor and Saffman. 

When one averages a quantity like D,,(k, t )  over f;, however, one requires knew to 
lie on the surface of a fixed sphere. One can ask where each knew came from, in particu- 
lar, what was kEld as a function of knew a t  fixed ktew. To answer that question, one need 
only square (6.1): 

k%d = %ew k e w  - w. ‘new- 

Thus, provided W has at  least one large eigenvalue, most orientations knew will imply 

kold > knew 
And now we have a paradox. 
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The eondition needed to generate the paradox is almost surely met. The requirement 
is simply that W have an eigenvalue that differs substantially from unity. Then 
det W = 1 will imply that there are a t  least two such eigenvalues, one small and one 
large, and they will do the job. 

Let’s look back a moment to the exact two-dimensional analysis in $4. Equation 
( 4 4 ,  when multiplied by k, gives the angular mean of the radial flux. We reasoned 
that Tr (TW-4) would be negative and so the net flux would be positive, in accord with 
Saffman’s picture. That reasoning is probably correct, but now we see that the net 
outward flux arises from a subtle balancing of outward and inward flow, wherein the 
inward contributions are - according to  (6.5) - actually the more numerous, though 
not dominant. 

For Saffman’s approximation to be valid, it  is necessary that angular mean values 
be overwhelmingly dominated by contributions which have evolved from smaller 
wavenumbers. That, in turn, requires strong variation of <Dmj(k, t)),, with f; at fixed 
k. A narrowly construed viscous-convective range does not provide sufficiently strong 
variation, but, as one goes out in wavenumber space, dissipation begins to exert an 
influence that cannot be ignored. The dissipative exponential in (3.1) and, perhaps, an 
analogous exponential in the initial spectrum will cause the integrand in an angular 
average to peak around contributions that evolved from smaller wavenumber. If the 
peaking is sharp enough, it will produce the effectively one-way spectral transfer 
envisaged by Batchelor and Saffman. The importance of going to large k-and the 
need, perhaps - was recognized by Saffman (1963, p. 560). 

When the integrand in an angular average is sharply peaked, one can generate some 
estimates for the parameters T and CT, as follows. Equations (3.1) and (4.1) imply 

with 

Suppose (2.9) is averaged over initial values of the magnetic field. The ensuing amplifi- 
cation term can be written as 

and this is to be compared with 

If the angular averages in these two expressions are dominated by those fc for which 
f . W . fc is small, say, relative to Tr W*, then the second terms should be negligible 
relative to the first, and one can extract the relation 

(6.10) 

Next, one can examine the mean radial flux, which appears in the second term of 
(2.9). Suppose that Djj ,  regarded as a function of k, peaks when f; .W.k has its 
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smallest value. It will be useful to re-express that condition in terms of the tensor W-4 
and its principal axes. So let k(a) denote the normalized eigenvectors of W-4: 

with a = 1 labelling the largest eigenvalue of W-4. Then one has 

- (k . T . kDji)b,C N - k(l). T . k(l)(Djj)b,G 

(6.11) 

(6.12) 

by (6.1 1) .  If w ~ f  is much larger than the other two eigenvalues, then the denominator 
in (6.12) may be approximated by Tr (W-1). Similarly, the numerator may be extend- 
ed to a sum over all three eigenvectors: 

l&). W-4. T. W-*. k(,, ‘V C W-4. T. W-3. k(a) 
U 

z Tr (TW-l); (6.13) 

the last step follows because the set {h(,)> form an orthonormal triad. The upshot is 

Tr (TW-l) 
- (k . T. kDjj)b,$ ‘V - Tr (W-l) (Dji>b,ij  (6.14) 

though one must concede immediately that one could carry through the same reason- 
ing with almost any negative power of W, and so the coefficient on the right-hand side 
may not be the optimum estimate. 

In principle, one can determine the parameters 7 and u by comparing (2.1 1) with a 
suitable average of (2.9). This means one should really average (6.10) and (6.14) over 
many fluid elements before trying to extract 7 and g. That introduces correlations 
between the factors to which one cannot really do justice analytically. One might as 
well assess the parameters directly from a comparison among (2.9), (2.11),  (6.10) and 
(6.14): 

Tr (TW) 
0-17 N ~ 

TrW ’ 

Tr (TW-l) 
-“ - Tr (W-1) . 

(6.151 

(6.16) 

Some average of the right-hand sides over turbulence is in order, but the estimates are 
meaningful only if averages do not differ much from typical values, in the root mean 
square sense, say. Moreover, sufficient time must have elapsed for typical W’s to have 
reached values substantially different from the unit tensor. 

The estimates (6.15) and (6.16) are rotationally invariant expressions, with natural 
weighting functions, for two strain values. Although their derivation leaves something 
to be desired, one may be able to calculate them numerically by computer simulation 
of turbulence and thereby gain a better estimate of the parameters, in particular, of the 
ratio g. 
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7. Closing remarks 
Some remarks to close out the discussion are in order. 
Much of the preceding analysis used (4.1) as an integral element. That initial con- 

dition might be suspect on the grounds that correlations between B and the turbulence 
at t = 0 are inadequately described: a statistically steady state would possess correla- 
tions. But, provided one waits an eddy turnover time or two, that potential inade- 
quacy should make no difference, as indeed seems to  be true for the magnetic field in 
two dimensions (and for scalar fields in both two and three dimensions). For the mag- 
netic field in three dimensions, one could ask - at the very least - why doesn’t a 
natural form like (4.1) lead, after a transient period, to a statistically steady state? 
That it seems not to is itself significant. 

The implications of Q 5 ,  as expressed mar the end of that section, bear reiterating. If 
one construes the viscous-convective range narrowly, by ignoring magnetic dissipa- 
tion entirely, and if one works with a magnetic field in three dimensions, then turbulent 
amplification seems to be more effective than Saffman’s approximation implies. The 
cause seems to be a matter of geometry, not of correlation times or relative time scales. 

One has to bear in mind that the steps from (2.1) through (2.4) to (2.7) entailed two 
qualitatively major approximations: ( 1 )  a change of focus from the entire fluid to the 
neighbourhood of an individual fluid element and (2) an expansion (in effect) of the 
Lagrangian velocity field which stopped a t  the first derivative of that field. For study- 
ing the small-scale structure of the magnetic field, these approximations should be 
valid. Yet Saffman’s comment, ‘...we must again conclude that the application of 
Batchelor’s ideas to [vector fields] is not entirely equivalent to considering the be- 
haviour of random distributions in straining motions of infinite extent’ (1963, p. 556), 
gives one pause. It is conceivable that Saffman’s approximation is valid in the viscous- 
convective range and yet one cannot show that with the route taken in this paper. 

My thanks for hospitality go to Professor Ronald Ruby and the Physics Board at  the 
University of California, Santa Cruz, where this work was completed during a sabbati- 
cal leave. 

Appendix. The limit of a short auto-correlation time 
Approximations for stochastic differential equations that are based on a short auto- 

correlation time have been reviewed very nicely by Van Kampen (1976). Kraichnan 
(1968) applied the idea to the small-scale structure of a scalar field in turbulence. 

Our starting point is (2.7)) expressed in operator form and with h = 0: 

aDrnj/at = Qmjnp Drip, (A 1)  

where Qmjnp a’(smn T i p  -I- Tmn) -I- Tab ‘adma s jp (a /akb) .  (A 2) 

The parameter a’ is inserted to keep track of the amplification terms that operate for a 
vector field. A numerical value of a’ = 1 gives that situation, while a’ = 0, together with 
a trace operation, will generate the equation appropriate for a scalar field. 

Now we form an average of (A 1 )  over a set of fluid elements and over initial values of 
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The operator Q is linear in the tensor T, which changes on the time scale r,, its auto- 
correlation time. As before, the differential equation (A 1) says that Dmi changes on the 
time scale l /O(Tmn).  One now spec(fies that r, g l/O(Tmn). 

When the strong inequality between time scales holds, only ‘a small portion’ of 
Dn,(k, 1 )  can be well-correlated with Qmjnp(t) ,  essentially the increment in D,, over 
the interval t - 7, to t ,  which was produced by T ’ s  with which T(t) is well-correlated. 
This suggests writing D,, in (A 3 )  as the integral of its time derivative and using (A 1 )  
again : 

a<Dmj) /a t  = <&mjnp(t)  D n p ( k ,  O ) )  + dt’<&mjnp(t)  Dub(k,  t ’ ) )*  (A 4, J: 
Once t 9 T,, the first term can be set to zero because Q ( t )  will be uncorrelated with 
Dn,(k, 0) and (Q(t)) = 0 because it is linear in the tensor T. The integrand in the 
second term will be non-zero only over an interval (t - few 7,)  5 t’ < t, and during this 
period Dub changes little. Moreover, one can get a non-zero result even if one ignores the 
correlation between (a small portion of) Dub and the operator product. (Correlaticn 
corrections can be generated in a systematic fashion, as Van Kampen 1976 describes so 
well.) Upon factoring the second term in (A 4), one arrives a t  

a{Dmj) /a t  = <&mjnp(t) (Dub(k,  t )> .  (A 5) 

The averages over turbulence and initial field imply that (Dmj)  must have the 
isotropic form 

The rest is a matter of algebra: one finds 

(Dmj(k, t ) )  = [ ( J m j - g m g j ) / ( d -  1 ) 1 ~ ( k ~ , t ) *  (A 6 )  

with 

where the upper entry refers to spatial dimension d = 2 and the lower to d = 3. 
The vector field in two dimensions has the steady-state solutions 

(Djj)2a,m = const., const.‘ x k2. (A111 

Both of these spectral forms occur as steady solutions in (3.1) when that equation is 
averaged as in $4 .  

The situation in three dimensions is quite different. Trying for a steady state with a 
monomial leads to 

(Djj)sd,m K kS with s = - 4 i(y)t 
k -t 

= 1const.l x (3 cos 
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where lcf is some fiducial wavenumber. Since (A 12) contains two linearly independent 
solutions, i t  is a general solution. The viscous-convective range can certainly be large 
enough for k / k f  to vary greatly, and so the right-hand side will be driven negative, no 
matter what value is chosen for the phase. This conflicts with the positive definiteness 
of the left-hand side, and so no meaningful steady-state solution exists. 

An aside about the two-dimensional geometry is in order. The coefficient C, vanishes 
not only when a' = 0 but also when a' = 1, suggesting a closer link with the scalar 
field in two dimensions than exists in three dimensions. This is indeed so, as the follow- 
ing analysis shows. 

If one thinks of the two-dimensional system as embedded in a three-dimensional 
space, in particular, as occupying the plane z = 0, then one can write 

B~ = Eim3a&/aXm,  vj = Ejm3a$/axm, (A 13) 

where a22 is a vector potential and 4 a stream function. Next, suppose one specifies 
that the ( scalar ' & is to satisfy a convective, dissipative equation : 

a d / a t  = - v . grad d + h V 2 d .  (A 14) 

Then operation on this equation with ejm3(a/axm), together with (A 13), will generate 
precisely the differential equation that emerges when the vector operations in (2.1) 
are expanded as if in three dimensions and the result is projected onto the (x, y) plane. 
The route can, of course, be reversed to deduce from (2.1) and (A 13) that (A 14) will 
hold. 

Although a transverse vector field B must be generated from the ( scalar ' d, there is 
a certain strong sense in which the two-dimensional magnetic field is not essentially 
different from a scalar field, especially when one examines mean values in wave- 
number space. This kinship goes a long way toward explaining why the two-dimen- 
sional magnetic field has steady-state behaviour as good as that for a bona $de scalar 
field. 
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